NOTE TO A PROBLEM OF T. GALLAI AND G. A. DIRAC

G. KOESTER

Received 7 November 1984

A counter-example to a conjecture of T. Gallai and G. A. Dirac is given.

Let G be a planar graph and assume that G is 4-critical, i.e., $\chi(G)=4$ and $\chi(G') \leq 3$ for every proper subgraph G' of G (χ denotes the chromatic number). Let v(x) denote the number of edges incident with vertex x. If v(x)=3 or v(x)>3 then x is called a secondary or primary vertex of G, respectively.

In his paper [1] T. Gallai mentioned the following:

G. A. Dirac conjectured (oral communication) that every planar 4-critical graph contains secondary vertices. We believe that each planar 4-critical graph must contain at least four secondary vertices.

This conjecture is contained in the following.

Conjecture. Each planar 4-critical graph with n vertices contains at most 2n-2 edges.

The graph G^* in Fig. 1(2) is a counterexample for these conjectures. It is also a counterexample for a conjecture of H. Grötzsch (communicated by H. Sachs) concerning 3-vertex-colorability [2].

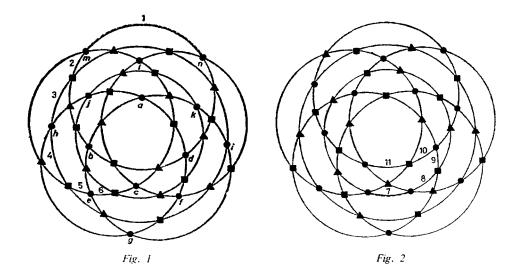
Theorem. G^* is planar and 4-critical, G^* contains only primary vertices and 2n(=80) edges.

Proof. Since planarity, edge number, absence of secondary vertices, and $\chi(G^*) \ge 3$ follow immediately from the figures, it suffices to show:

1)
$$\chi(G^*) > 3$$
.

Assume $\chi(G^*)=3$, then at every 3-coloring of G^* three colors must occur in the central pentagon, two of them (say α , β) twice and the third (say γ) only once. Let vertex a have color γ (circles, see Fig. 1), then the following 13 vertices b, ..., n necessarily must have color γ , too. But vertices m, n are adjacent (edge 1) and this contradicts the assumption.

AMS subject classification (1980): 05 C 15.



2) $\chi(G^* - \{e\}) = 3$ holds for every edge e of G^* .

If we complete the 3-coloring of $G^*-\{1\}$ with color α (triangles) and color β (squares) like in Fig. 1 we see that $\chi(G^*-\{1\})=3$ (and $\chi(G^*)=4$). Moreover, the edge sequence $\{2,3,4,5,6\}$ is a path with alternating vertex colors β , γ , and if we put color β to vertex m we find that $\chi(G^*-\{2\})=3$. If we continue in changing colors β , γ at this path we find that $\chi(G^*-\{i\})=3$ for $i=1,\ldots,6$. In Fig. 2 we have a 3-coloring of $G^*-\{7\}$. The same argument as above leads to $\chi(G^*-\{j\})=3$ for j=7,8,9,10,11. From the symmetry of G^* follows that $\chi(G^*-\{e\})=3$ holds for every edge e of G^* .

Acknowledgment. The author thanks W. Wessel (Berlin) for his helpful assistance at the second point of the proof.

References

- [1] T. Gallal, Critical graphs, in: Theory of Graphs and its Applications (Proc. Symp. Smolenice 1963), Publ. House Czechoslovak Acad. Sci., Prague 1964, 43—45.
- [2] G. Koester, Bemerkung zu einem Problem von H. Grötzsch. Wiss. Z. Univ. Halle, XXXIII (1984), M.H.5. S.129.

G. Koester

Julius-Bernstein-Inst. für Physiologie der Martin-Luther-Universität Halle—Wittenberg 4020 Halle|Saale Rudolf-Haym-Str. 25. DDR